The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch

نویسندگان

  • Mashito Sakai
  • Tomoko Tujimura-Hayakawa
  • Takashi Yagi
  • Hiroyuki Yano
  • Masaru Mitsushima
  • Hiroyuki Unoki-Kubota
  • Yasushi Kaburagi
  • Hiroshi Inoue
  • Yoshiaki Kido
  • Masato Kasuga
  • Michihiro Matsumoto
چکیده

Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon-cAMP-protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms that have remained unclear. Here we show that GCN5 functions both as a histone acetyltransferase (HAT) to activate fasting gluconeogenesis and as an acetyltransferase for the transcriptional co-activator PGC-1α to inhibit gluconeogenesis in the fed state. During fasting, PKA phosphorylates GCN5 in a manner dependent on the transcriptional coregulator CITED2, thereby increasing its acetyltransferase activity for histone and attenuating that for PGC-1α. This substrate switch concomitantly promotes both epigenetic changes associated with transcriptional activation and PGC-1α-mediated coactivation, thereby triggering gluconeogenesis. The GCN5-CITED2-PKA signalling module and associated GCN5 substrate switch thus serve as a key driver of gluconeogenesis. Disruption of this module ameliorates hyperglycemia in obese diabetic animals, offering a potential therapeutic strategy for such conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit.

Protein kinase A (PKA), in yeast, plays a major role in controlling metabolism and gene expression in connection with the available nutrient conditions. We here measure, for the first time, a transient change in the in vivo PKA activity, along a cAMP peak produced by 100 mM glucose addition to glycerol-growing cells as well as a change in the phosphorylation state of its catalytic subunit (Tpk1...

متن کامل

Homocysteine activates cAMP-response element binding protein in HepG2 through cAMP/PKA signaling pathway.

OBJECTIVE Hyperhomocysteinemia is an independent risk factor for cardiovascular disorders. Our previous studies demonstrated that hyperhomocysteinemia not only elicited inflammatory responses in the vascular endothelium but also induced fatty liver and hypercholesterolemia via transcriptional regulation. One of the transcription factors activated in the liver during hyperhomocysteinemia was cAM...

متن کامل

Differential regulation of glucose transport activity in yeast by specific cAMP signatures.

Successful colonization and survival in variable environments require a competitive advantage during the initial growth phase after experiencing nutrient changes. Starved yeast cells anticipate exposure to glucose by activating the Hxt5p (hexose transporter 5) glucose transporter, which provides an advantage during early phases after glucose resupply. cAMP and glucose FRET (fluorescence resonan...

متن کامل

Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast.

The cAMP-protein kinase A (PKA) pathway in the yeast Saccharomyces cerevisiae controls a variety of properties that depend on the nutrient composition of the medium. High activity of the pathway occurs in the presence of rapidly fermented sugars like glucose or sucrose, but only as long as growth is maintained. Growth arrest of fermenting cells or growth on a respiratory carbon source, like gly...

متن کامل

Role of PDE3B in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis in primary rat adipocytes.

In adipocytes, phosphorylation and activation of PDE3B is a key event in the antilipolytic action of insulin. The role of PDE4, another PDE present in adipocytes, is not yet known. In this work we investigate the role of PDE3B and PDE4 in insulin-induced glucose uptake, GLUT-4 translocation and lipogenesis. Inhibition of PDE3 (OPC3911, milrinone) but not PDE4 (RO 20-1724) lowered insulin-induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016